Important code related to how read comma Separated Values, which having .csv file extention. in this article we will discuss all the function related to CSV file
import pandas as pd
df= pd.read_csv("C:\\Users\\YOGENDRASINGH\\Downloads\\transactions.csv")
#C:\\Users\\YOGENDRASINGH\\Downloads\\transactions.csv == file path name with extention where your .csv file stored
print(df.shape)
#df= pd.read_csv("C:\\Users\\YOGENDRASINGH\\Downloads\\transactions.csv",usecols=['Name','Com'])
df= pd.read_csv("C:\\Users\\YOGENDRA SINGH\\Downloads\\transactions.csv", nrows=5)
#nrows show 5 records from the file
df= pd.read_csv("C:\\Users\\YOGENDRA SINGH\\Downloads\\transactions.csv", nrows=5,header=None)
print(df)
df= pd.read_csv("C:\\Users\\YOGENDRA SINGH\\Downloads\\transactions.csv", nrows=5,header=None, index_col=0)
print(df)
df= pd.read_csv("C:\\Users\\YOGENDRA SINGH\\Downloads\\transactions.csv", nrows=5,header=None, index_col=0,skiprows=1)
print(df)
df= pd.read_csv("C:\\Users\\YOGENDRA SINGH\\Downloads\\transactions.csv", nrows=5,header=None, index_col=0,skiprows=2)
print(df)
df= pd.read_csv("C:\\Users\\YOGENDRA SINGH\\Downloads\\transactions.csv", nrows=5, index_col=0,skiprows=2, names=['Cam','Income','Paid/Not Paid','Sale_date','Sale_amount'])
print(df)
df= pd.read_csv("C:\\Users\\YOGENDRA SINGH\\Downloads\\transactions.csv", na_values=[499],nrows=5, index_col=0,skiprows=2, names=['Cam','Income','Paid/Not Paid','Sale_date','Sale_amount'])
print(df)
#how to write and csv file using pandas
# copy file to another file
df= pd.read_csv("C:\\Users\\YOGENDRA SINGH\\Downloads\\transactions.csv")
df.to_csv("C:\\Users\\YOGENDRA SINGH\\Downloads\\Cuelinks_transactions.csv")
#create new file
student={"Roll_No": [1,2],
"Student_name": ["Rahul","sonu"]}
df1=pd.DataFrame(student,columns=["Roll_No","Student_name"])
#df1.to_csv("C:\\Users\\YOGENDRA SINGH\\Downloads\\Newfile1111.csv")
df11=pd.read_csv("C:\\Users\\YOGENDRA SINGH\\Downloads\\Newfile1111.csv")
print(df11)
df11=pd.read_csv("C:\\Users\\YOGENDRA SINGH\\Downloads\\Newfile1111.csv",index_col=0)
print(df11)
df2=df.mode(axis=0)
print(df2)
0 Comments